Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 89(12): 1977-1986, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34387007

RESUMO

The Continuous Automated Model EvaluatiOn (CAMEO) platform complements the biennial CASP experiment by conducting fully automated blind evaluations of three-dimensional protein prediction servers based on the weekly prerelease of sequences of those structures, which are going to be published in the upcoming release of the Protein Data Bank. While in CASP14, significant success was observed in predicting the structures of individual protein chains with high accuracy, significant challenges remain in correctly predicting the structures of complexes. By implementing fully automated evaluation of predictions for protein-protein complexes, as well as for proteins in complex with ligands, peptides, nucleic acids, or proteins containing noncanonical amino acid residues, CAMEO will assist new developments in those challenging areas of active research.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Conformação Proteica , Análise de Sequência de Proteína , Software , Benchmarking , Análise por Conglomerados , Modelos Moleculares , Proteínas/química , Proteínas/genética
3.
Bioinformatics ; 36(6): 1765-1771, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31697312

RESUMO

MOTIVATION: Methods that estimate the quality of a 3D protein structure model in absence of an experimental reference structure are crucial to determine a model's utility and potential applications. Single model methods assess individual models whereas consensus methods require an ensemble of models as input. In this work, we extend the single model composite score QMEAN that employs statistical potentials of mean force and agreement terms by introducing a consensus-based distance constraint (DisCo) score. RESULTS: DisCo exploits distance distributions from experimentally determined protein structures that are homologous to the model being assessed. Feed-forward neural networks are trained to adaptively weigh contributions by the multi-template DisCo score and classical single model QMEAN parameters. The result is the composite score QMEANDisCo, which combines the accuracy of consensus methods with the broad applicability of single model approaches. We also demonstrate that, despite being the de-facto standard for structure prediction benchmarking, CASP models are not the ideal data source to train predictive methods for model quality estimation. For performance assessment, QMEANDisCo is continuously benchmarked within the CAMEO project and participated in CASP13. For both, it ranks among the top performers and excels with low response times. AVAILABILITY AND IMPLEMENTATION: QMEANDisCo is available as web-server at https://swissmodel.expasy.org/qmean. The source code can be downloaded from https://git.scicore.unibas.ch/schwede/QMEAN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas , Software , Modelos Moleculares , Redes Neurais de Computação , Conformação Proteica
4.
Proteins ; 87(12): 1378-1387, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31571280

RESUMO

Critical blind assessment of structure prediction techniques is crucial for the scientific community to establish the state of the art, identify bottlenecks, and guide future developments. In Critical Assessment of Techniques in Structure Prediction (CASP), human experts assess the performance of participating methods in relation to the difficulty of the prediction task in a biennial experiment on approximately 100 targets. Yet, the development of automated computational modeling methods requires more frequent evaluation cycles and larger sets of data. The "Continuous Automated Model EvaluatiOn (CAMEO)" platform complements CASP by conducting fully automated blind prediction evaluations based on the weekly pre-release of sequences of those structures, which are going to be published in the next release of the Protein Data Bank (PDB). Each week, CAMEO publishes benchmarking results for predictions corresponding to a set of about 20 targets collected during a 4-day prediction window. CAMEO benchmarking data are generated consistently for all methods at the same point in time, enabling developers to cross-validate their method's performance, and referring to their results in publications. Many successful participants of CASP have used CAMEO-either by directly benchmarking their methods within the system or by comparing their own performance to CAMEO reference data. CAMEO offers a variety of scores reflecting different aspects of structure modeling, for example, binding site accuracy, homo-oligomer interface quality, or accuracy of local model confidence estimates. By introducing the "bestSingleTemplate" method based on structure superpositions as a reference for the accuracy of 3D modeling predictions, CAMEO facilitates objective comparison of techniques and fosters the development of advanced methods.


Assuntos
Biologia Computacional , Conformação Proteica , Proteínas/ultraestrutura , Software , Algoritmos , Benchmarking , Sítios de Ligação , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Dobramento de Proteína , Proteínas/química , Proteínas/genética , Análise de Sequência de Proteína
5.
Nucleic Acids Res ; 46(W1): W296-W303, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29788355

RESUMO

Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.


Assuntos
Internet , Conformação Proteica , Proteínas/genética , Software , Bases de Dados de Proteínas , Modelos Químicos , Simulação de Dinâmica Molecular , Proteínas/química , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
6.
Proteins ; 86 Suppl 1: 387-398, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178137

RESUMO

Every second year, the community experiment "Critical Assessment of Techniques for Structure Prediction" (CASP) is conducting an independent blind assessment of structure prediction methods, providing a framework for comparing the performance of different approaches and discussing the latest developments in the field. Yet, developers of automated computational modeling methods clearly benefit from more frequent evaluations based on larger sets of data. The "Continuous Automated Model EvaluatiOn (CAMEO)" platform complements the CASP experiment by conducting fully automated blind prediction assessments based on the weekly pre-release of sequences of those structures, which are going to be published in the next release of the PDB Protein Data Bank. CAMEO publishes weekly benchmarking results based on models collected during a 4-day prediction window, on average assessing ca. 100 targets during a time frame of 5 weeks. CAMEO benchmarking data is generated consistently for all participating methods at the same point in time, enabling developers to benchmark and cross-validate their method's performance, and directly refer to the benchmarking results in publications. In order to facilitate server development and promote shorter release cycles, CAMEO sends weekly email with submission statistics and low performance warnings. Many participants of CASP have successfully employed CAMEO when preparing their methods for upcoming community experiments. CAMEO offers a variety of scores to allow benchmarking diverse aspects of structure prediction methods. By introducing new scoring schemes, CAMEO facilitates new development in areas of active research, for example, modeling quaternary structure, complexes, or ligand binding sites.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Sítios de Ligação , Bases de Dados de Proteínas , Humanos , Ligantes , Ligação Proteica
7.
Nucleic Acids Res ; 45(5): 2341-2353, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28031372

RESUMO

High-throughput sequencing has greatly facilitated the discovery of long and short non-coding RNAs (ncRNAs), which frequently guide ribonucleoprotein complexes to RNA targets, to modulate their metabolism and expression. However, for many ncRNAs, the targets remain to be discovered. In this study, we developed computational methods to map C/D box snoRNA target sites using data from core small nucleolar ribonucleoprotein crosslinking and immunoprecipitation and from transcriptome-wide mapping of 2΄-O-ribose methylation sites. We thereby assigned the snoRNA guide to a known methylation site in the 18S rRNA, we uncovered a novel partially methylated site in the 28S ribosomal RNA, and we captured a site in the 28S rRNA in interaction with multiple snoRNAs. Although we also captured mRNAs in interaction with snoRNAs, we did not detect 2΄-O-methylation of these targets. Our study provides an integrated approach to the comprehensive characterization of 2΄-O-methylation targets of snoRNAs in species beyond those in which these interactions have been traditionally studied and contributes to the rapidly developing field of 'epitranscriptomics'.


Assuntos
Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Guia de Cinetoplastídeos/genética , RNA Nucleolar Pequeno/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Transcriptoma , Sequência de Bases , Reagentes de Ligações Cruzadas/química , Bases de Dados Genéticas , Imunoprecipitação , Metilação , Ligação Proteica , RNA Guia de Cinetoplastídeos/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Ribose/metabolismo , Software
9.
Nucleic Acids Res ; 44(11): 5068-82, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27174936

RESUMO

Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs that guide the post-transcriptional processing of other non-coding RNAs (mostly ribosomal RNAs), but have also been implicated in processes ranging from microRNA-dependent gene silencing to alternative splicing. In order to construct an up-to-date catalog of human snoRNAs we have combined data from various databases, de novo prediction and extensive literature review. In total, we list more than 750 curated genomic loci that give rise to snoRNA and snoRNA-like genes. Utilizing small RNA-seq data from the ENCODE project, our study characterizes the plasticity of snoRNA expression identifying both constitutively as well as cell type specific expressed snoRNAs. Especially, the comparison of malignant to non-malignant tissues and cell types shows a dramatic perturbation of the snoRNA expression profile. Finally, we developed a high-throughput variant of the reverse-transcriptase-based method for identifying 2'-O-methyl modifications in RNAs termed RimSeq. Using the data from this and other high-throughput protocols together with previously reported modification sites and state-of-the-art target prediction methods we re-estimate the snoRNA target RNA interaction network. Our current results assign a reliable modification site to 83% of the canonical snoRNAs, leaving only 76 snoRNA sequences as orphan.


Assuntos
Perfilação da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Nucleolar Pequeno , Transcriptoma , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , Humanos , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , RNA não Traduzido
11.
Methods ; 85: 90-99, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25892562

RESUMO

We quantify the strength of miRNA-target interactions with MIRZA, a recently introduced biophysical model. We show that computationally predicted energies of interaction correlate strongly with the energies of interaction estimated from biochemical measurements of Michaelis-Menten constants. We further show that the accuracy of the MIRZA model can be improved taking into account recently emerged experimental data types. In particular, we use chimeric miRNA-mRNA sequences to infer a MIRZA-CHIMERA model and we provide a framework for inferring a similar model from measurements of rate constants of miRNA-mRNA interaction in the context of Argonaute proteins. Finally, based on a simple model of miRNA-based regulation, we discuss the importance of interaction energy and its variability between targets for the modulation of miRNA target expression in vivo.


Assuntos
Marcação de Genes/métodos , MicroRNAs/química , MicroRNAs/metabolismo , Modelos Moleculares , Sítios de Ligação/fisiologia , Humanos , Estrutura Secundária de Proteína
12.
Nucleic Acids Res ; 43(3): 1380-91, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25628353

RESUMO

Small interfering RNA (siRNA)-mediated knock-down is a widely used experimental approach to characterizing gene function. Although siRNAs are designed to guide the cleavage of perfectly complementary mRNA targets, acting similarly to microRNAs (miRNAs), siRNAs down-regulate the expression of hundreds of genes to which they have only partial complementarity. Prediction of these siRNA 'off-targets' remains difficult, due to the incomplete understanding of siRNA/miRNA-target interactions. Combining a biophysical model of miRNA-target interaction with structure and sequence features of putative target sites we developed a suite of algorithms, MIRZA-G, for the prediction of miRNA targets and siRNA off-targets on a genome-wide scale. The MIRZA-G variant that uses evolutionary conservation performs better than currently available methods in predicting canonical miRNA target sites and in addition, it predicts non-canonical miRNA target sites with similarly high accuracy. Furthermore, MIRZA-G variants predict siRNA off-target sites with an accuracy unmatched by currently available programs. Thus, MIRZA-G may prove instrumental in the analysis of data resulting from large-scale siRNA screens.


Assuntos
MicroRNAs/metabolismo , RNA Interferente Pequeno/genética , Transcriptoma , Regiões 3' não Traduzidas , Pareamento Incorreto de Bases , Sítios de Ligação , MicroRNAs/genética , Modelos Genéticos , Transfecção
13.
Nat Commun ; 5: 5465, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25413384

RESUMO

Alternative polyadenylation is a cellular mechanism that generates mRNA isoforms differing in their 3' untranslated regions (3' UTRs). Changes in polyadenylation site usage have been described upon induction of proliferation in resting cells, but the underlying mechanism and functional significance of this phenomenon remain largely unknown. To understand the functional consequences of shortened 3' UTR isoforms in a physiological setting, we used 3' end sequencing and quantitative mass spectrometry to determine polyadenylation site usage, mRNA and protein levels in murine and human naive and activated T cells. Although 3' UTR shortening in proliferating cells is conserved between human and mouse, orthologous genes do not exhibit similar expression of alternative 3' UTR isoforms. We generally find that 3' UTR shortening is not accompanied by a corresponding change in mRNA and protein levels. This suggests that although 3' UTR shortening may lead to changes in the RNA-binding protein interactome, it has limited effects on protein output.


Assuntos
Regiões 3' não Traduzidas , Proliferação de Células , Proteínas/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Poliadenilação , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...